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THE INFLUENCE OF CONCENTRATED MASSES
AND PASTERNAK SOIL ON THE FREE VIBRATIONS

OF EULER BEAMS—EXACT SOLUTION
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The free vibration frequencies of a beam with flexible ends resting on Pasternak soil are
determined in the presence of a concentrated mass at an arbitrary intermediate abscissa.
The differential equation of motion is deduced and solved, and the resulting frequency
equation gives the exact frequencies of the system. Some numerical examples and
comparisons end the paper.
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1. INTRODUCTION

The dynamic and stability analysis of Euler–Bernoulli and Timoshenko beams on
Pasternak soil has been the subject of various recent investigations. A comprehensive
review of various linear elastic soil models and of their physical meanings can be found
in reference [1].

The simplest model is obviously given by the Winkler elastic soil, whose dynamic and
stability behaviour has been thoroughly investigated both by approximate methods [2] and
an exact approach [3–5], in the presence of flexible ends and stepped beam cross-section
[3]. The effect of eccentric concentrated masses and of axial forces on the free vibration
frequencies has been illustrated in reference [4]. Some foundation models and a finite
element for the static analysis of an Euler–Bernoulli beam resting on a Winkler soil have
been given in reference [6], whereas dynamic and stability analysis has been presented in
references [7–9]. The same beam on a Pasternak two-parameter soil has been analysed in
an exact way in references [10, 11], and the corresponding Timoshenko beam has been
studied in reference [12]. A useful lower bound for frequencies and critical loads can be
obained from reference [13], whereas an extension to a three-parameter Baratha–Levinson
soil has been given in reference [14].

In this paper, the exact free vibration frequencies of a Euler beam on two-parameter
elastic soil are calculated, in the presence of flexible ends and of a concentrated mass acting
along the span at an arbitrary abscissa. Two different reference frames are introduced, with
origins at the beam ends, and the solutions of the differential equation of motion are
normalized with respect to these origins. In this way, the frequency equation is simplified
as much as possible.
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Numerical examples and comparisons end the paper, with use of some known results
for classical boundary conditions.

2. EXACT ANALYSIS

Consider the beam in Figure 1, with span L, resting on a two-parameter elastic soil. Let
x1 and x2 be two different reference frames with origins at the beam ends, and L1 and L2

the distance of the concentrated mass M from the origins of the two reference frames. If
the Euler–Bernoulli slender beam theory is adopted, then the following equation of motion
can easily be deduced by means of Hamilton’s principle:

(EI)v2i (xi , t)− k1 v0i (xi , t)+ k0 vi (xi , t)+ rAv̈i (xi , t)=0. (1)

Here, E is the Young modulus, I and A are the second moment of area and the area of
the beam cross section, r is the mass density, k0 is the Winkler modulus of the subgrade
reaction, k1 is the second foundation parameter, vi is the vertical displacement, xi is the
abscissa, and t is the time.

The solution can be sought in the form

vi (xi , t)=Vi (x) ejvt, (2)

where v is the circular frequency and j=z−1. Equation (1) then becomes

(EI)V2i (xi )− k1 V0i (xi )+ (k0 − rAv2)Vi (xi )=0. (3)

It is convenient to rewrite this equation in the more abstract form

V2i (xi )− bV0i (xi )+ cVi (xi )=0, (4)

with b= k1 /EI and c=(k0 − rAv2)/EI. The characteristic polynomial of this equation is

r4 − br2 + cr=0, (5)

and its general solution is

Vi (xi )=Ai1 er1 xi +Ai2 er2 xi +Ai3 er3 xi +Ai4 er4 xi , (6)

where r1, r2, r3 and r4 are the roots of the polynomial equation (5).
In order to find the roots, it is important to take into account that (1a) k1 is greater than

zero, (1b) EI is greater than zero, (1c) k0 − rAv2 does not have a definite sign.
If one defines

p= r2, (7)

Figure 1. The structural scheme.
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then equation (5) becomes a second order polynomial equation:

p2 − bp+ c=0. (8)

One can now define D= b2 −4c, so that the following three cases can be distinguished:

Dq 0 zDQ b, (9)

with roots

r1,2 =2zp1 =2g, r3,4 =2zp2 =2n, (10)

and solution given by

Vi (xi )=Ci1 cosh gxi +Ci2 sinh gxi +Ci3 cos nxi +Ci4 sin nxi ; (11)

(1b),

Dq 0, zDq b, (12)

with roots

r1,2 =2zp1 =2g, r3,4 =2zp3 =2m, (13)

and solution given by

Vi (xi )=Ci1 cosh gxi +Ci2 sinh gxi +Ci3 cos mxi +Ci4 sin mxi (14)

with

p1 =
b+zD

2
, p2 =

b−zD

2
, p3 =

−b+zD

2
; (15–17)

and finally (1c)

DQ 0, (18)

with roots [15]

r1,2,3,4 =2(a2 ib), (19)

where

a=XXc
4

+
b
4
, b=XXc

4
−

b
4
, (20, 21)

and solution given by

Vi (xi )=Ci1 cos bxi cosh axi +Ci2 cos bxi sinh axi .

+Ci3 sin bxi cosh axi +Ci4 sin bxi sinh axi . (22)

This solution can be normalized with respect to the origin of the reference frame, by
imposing

H H H HVi1 (0) V'i1 (0) V0i1 (0) V1i1 (0) 1 0 0 0
H H H H

Vi2 (0) V'i2 (0) V0i2 (0) V1i2 (0) 0 1 0 0H H H H
Vi3 (0) V'i3 (0) V0i3 (0) V1i3 (0)

=
0 0 1 0

,
(23)

H H H H
Vi4 (0) V'i4 (0) V0i4 (0) V1i4 (0) 0 0 0 1H H H H
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and

Vi (xi )=Ci1 Vi1 +Ci2 Vi2 +Ci3 Vi3 +Ci4 Vi4. (24)

Henceforth, if Dq 0 one obtains the following: (1a) zDQ b,

Vi1 =
1

n2 − g2 (n2 cosh gxi − g2 cosh nxi ), Vi2 =
1

n2 − g2 0n2 sinh gxi

g
−

g2 sinh nxi

n 1,

(25, 26)

Vi3 =
1

n2 − g2 (−cosh gxi +cosh nxi ), Vi4 =
1

n2 − g2 0−sinh gxi

g
+

sinh nxi

n 1; (27, 28)

(1b), zDq b,

Vi1 =
1

m2 + g2 (m2 cosh gxi + g2 cos mxi ), Vi2 =
1

m2 + g2 0m2 sinh gxi

g
+

g2 sin mxi

m 1,

(29, 30)

Vi3 =
1

m2 + g2 (cosh gxi −cos mxi ), Vi4 =
1

m2 + g2 0sinh gxi

g
−

sin mxi

m 1; (31, 32)

(2), DQ 0,

Vi1 ==cos bx cosh axi −(a2 − b2) sin bxi sinh axi /2ab, (33)

Vi2 =$3b2 − a2

b
cosh axi sin bxi +

3a2 − b2

a
cos bxi sinh axi % 1

2(a2 + b2)
, (34)

Vi3 = sin bxi sinh axi /2ab (35)

Vi4 =$cosh axi sin bxi

b
−

cos bxi sinh axi

a % 1
2(a2 + b2)

. (36)

T 1

Numerical comparisons with reference [9] for a simply supported beam; the second row gives
the exact result

K0 K� 1 0 0·5 1 2·5

0 3·1415 3·4767 3·7306 4·2970
3·14159 3·4767 3·7360 4·2970

1 3·1496 3·4826 3·7407 4·3001
3·1496 3·48267 3·74078 4·30016

100 3·7483 3·9608 4·1437 4·5824
3·74836 3·9608 4·1437 4·58239

10 000 10·024 10·036 10·048 10·084
10·024 10·036 10·048 10·084

1 000 000 31·623 31·623 31·624 31·625
31·6235 31·6239 31·624 31·625
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T 2

Numerical comparisons with reference [7] for a clamped–clamped beam

K0 K� 1 0 0 0·5 0·5 1 1 2·5 2·5
ZXXXXXXXXXXXXXXXXXXCXXXXXXXXXXXXXXXXXV
Reference [7] Exact Reference [7] Exact Reference [7] Exact Reference [7] Exact

0 4·73 4·73 4·87 4·869 5·32 4·994 5·32 5·32
7·85 7·854 7·97 7·968 8·38 8·078 8·38 8·381

11·0 10·996 11·09 11·086 11·43 11·174 11·43 11·43
100 4·95 4·95 5·23 5·071 5·54 5·182 5·48 5·477

7·90 7·904 8·16 8·017 8·39 8·124 8·42 8·423
11·01 11·014 11·24 11·104 11·43 11·192 11·44 11·444

10 000 10·12 10·123 10·16 10·137 10·21 10·152 10·41 10·194
10·84 10·839 10·94 10·883 11·04 10·927 11·38 11·055
12·53 12·526 12·68 12·588 12·81 12·648 13·21 12·825

1 000 000 31·64 31·626 31·65 31·627 31·65 31·628 31·67 31·629
31·67 31·653 31·67 31·654 31·68 31·666 31·71 31·662
31·75 31·738 31·76 31·741 31·77 31·745 31·81 31·757

The boundary conditions are by no means intuitive, and it is necessary to use an
energetic approach, in order to be sure of not missing some term. One thus has the
following:

at x1 =0

EIV01 (0)= kR1 V'1 (0), EIV11 (0)+ kT1 V1 (0)= k1 V'1 (0); (37)

at x2 =0,

EIV02 (0)= kR2 V'2 (0), EIV12 (0)+ kT2 V2 (0)= k1 V'2 (0); (38)

Figure 2. Cantilever beam with tip mass. First non-dimensional frequency coefficient versus second foundation
parameter for k0 =1 and for various values of the concentrated mass.
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T 3

First three non-dimensional frequencies for beams with classical boundary conditions and
concentrated mass n=2 at mid-span, the first column is a comparison with reference [5]

(K0, K1)
ZXXXXXXXXXXXXXXXXXCXXXXXXXXXXXXXXXXXV
(2p4, 0) (1, 2·5) (10, 2·5) (100, 2·5) (1, 10) (10, 10) (100, 10)

C.F. 2·9141 1·8340 1·9759 2·6348 2·1475 2·2283 2·7214
4·2193 3·7534 3·7838 4·0771 4·2238 4·2469 4·4699
7·9522 7·9532 7·9570 8·0012 8·2194 8·2247 8·2644

C.C. 3·2489 3·0463 3·0588 3·1755 3·1720 3·1831 3·2875
7·9519 7·9124 7·9170 7·9619 8·0808 8·0851 8·1273
9·6916 9·6785 9·6808 9·7039 9·7868 9·7890 9·8113

C.P. 2·9910 2·6622 2·6838 2·8737 2·6423 2·8646 3·0225
6·9835 6·9202 6·9268 6·9920 6·8793 7·1507 7·2101
9·1404 9·1245 9·1273 9·1550 9·101 9·2561 9·2827

P.P. 2·7460 2·2210 2·2601 2·5683 2·4949 2·5224 2·7563
6·6710 6·3813 6·3900 6·4745 6·6489 6·6565 6·7315
8·1559 8·1320 8·1358 8·1735 8·3001 8·3037 8·3392

C.S. 2·9229 1·9573 2·0737 2·6361 2·1875 2·2583 2·7219
4·7936 4·4648 4·4845 4·6761 4·7106 4·7278 4·8951
8·5129 8·4908 8·4945 8·5304 8·6526 8·6560 8·6899

P.S. 2·7398 1·4451 1·6415 2·4128 1·7927 1·9048 2·5097
4·6418 4·2364 4·2618 4·4992 4·5302 4·5511 4·7493
7·3109 7·2649 7·2704 7·3251 7·4746 7·4797 7·5301

at x1 =L1 and x2 =L2,

V1 (L1)=V2 (L2), V'1 (L1)=−V'2 (L2), V01 (L1)=V02 (L2),

EIV11 (L1)+EIV12 (L2)=−Mv2V1 (L1). (39)

Here kR1, kR2 are the rotational stiffnesses of the beam ends, and kT1, kT2 are the axial
stiffnesses at the same ends.

This linear homogeneous system has non-trivial solutions if the determinant of the
coefficients is equal to zero (see the Appendix).

T 4

First three non-dimensional frequencies for a beam with n=10,
T1 =5, K0 =10 and K1 =1, and for various mass abscissae

m
ZXXXXXXXXCXXXXXXXXV

V 0·25 0·5 0·75

I 1·1041 1·4168 2·0216
II 4·7549 3·4138 2·9370

III 6·7918 7·8992 6·0397
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T 5

First three non-dimensional frequencies for a beam with n=10,
R1 =R2 =0·5, K0 =10 and K1 =1, and for various mass

abscissae

m
ZXXXXXXXXCXXXXXXXXV

V 0·25 0·5 0·75

I 1·9490 1·6933 1·9490
II 5·1866 6·5903 5·1866

III 9·0228 8·1560 9·0228

3. NUMERICAL EXAMPLES

It is convenient to define non-dimensional coefficients of the end flexibilities,

R1 =EI/kR1 L, R2 =EI/kR2 L, T1 =EI/kT1 L3, T2 =EI/kT2 L3, (40)

and non-dimensional soil parameter coefficients,

K0 = k0 L4/EI, K1 = k1 L2/EI, n=M/rAL, m=L1 /L. (41)

Finally, it is convenient to express the results in terms of the non-dimensional frequency
parameter

Vi =zzrAv2
i L4/EI . (42)

First of all, a comparison with the results given in references [7, 9] is shown in Tables 1
and 2, where the non-dimensional free frequency coefficients have been given as functions
of the two soil parameters, for both simply supported and clamped–clamped beams. It
should be noted that, for the sake of comparison, the definition K�1 =K1 p2 is used here.
Another comparison is shown in Table 3, where a concentrated mass n=2 at the mid-span
has been introduced, and the first three non-dimensional frequencies have been reported
as functions of the soil parameters for different classical boundary conditions. The Winkler
case has already been given in reference [4].

T 6

First three non-dimensional frequencies for a beam with n=10,
T2 =5, K0 =10 and K1 =1, and for various mass abscissae

m
ZXXXXXXXXCXXXXXXXXV

V 0·25 0·5 0·75

I 0·9457 0·9754 0·9557
II 2·4232 2·6980 2·4474

III 5·5227 4·4751 5·3641
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In Figure 2 the first non-dimensional frequency is given as a function of the second
foundation parameter, for different values of the mass: n=0, 1, 5, 10. The frequency
increases with the second foundation parameter, and decreases for increasing values of the
mass.

In Table 4 the influence of the constraint flexibility is taken into account by calculating
the first three non-dimensional free frequencies for a beam with elastic support at the right
end and with a clamped right end, in the presence of a concentrated mass n=10 placed
at m=0·25, 0·5, 0·75. The non-dimensional elastic flexibility of the support is equal to 5,
and the soil is defined by K0 =10, K1 =1.

The same structure is examined in Table 5, in the presence of rotationally flexible ends
with flexibilities R1 =R2 =0·5, and in Table 6 for a beam with sliding at left and an axially
flexible end at right with T2 =5.

Finally, it is worth noting that the position of the mass strongly influences the values
of the frequencies.

4. CONCLUSIONS

The exact dynamic analysis of Euler beams resting on Pasternak soil has been performed
in the presence of rotationally and axially flexible ends and concentrated masses placed
at arbitrary abscissae.

Some numerical examples show good agreement between exact and approximate results.
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APPENDIX

a11 =R1 LV12 +V13 +K1 T1 R1 L2V11, a12 =−T1 L3V11 +V14,

a13 =−(R2 LV22 +V23 +K1 T2 R2 L2V21), a14 =−(−T2 L3V21 +V24),

a21 =R1 LV'12 +V'13 +K1 T1 R1 L2V'11, a22 =−T1 L3V'11 +V'14,

a23 =R2 LV'22 +V'23 +K1 T2 R2 L2V'21, a24 =−T2 L3V'21 +V'24,

a31 =R1 LV012 +V013 +K1 T1 R1 L2V011, a32 =−T1 L3V011 +V014,

a33 =−(R2 LV022 +V023 +K1 T2 R2 L2V021), a34 =−(−T2 L3V021 +V024),

a41 =R1 LV112 +V113 +K1 T1 R1 L2V111 + a11 Mv2/EI,

a42 =−T1 L3V111 +V114 + a12 Mv2/EI

a43 =R2 LV122 +V123 +K1 T2 R2 L2V121 , a44 =−T2 L3V121 +V124 .


